NOTE ON MATH 2060: MATHEMATICAL ANALYSIS II: 2016-17

CHI-WAI LEUNG

1. Riemann Integrable Functions

We will use the following notation throughout this chapter.
(i): All functions $f, g, h \ldots$ are bounded real valued functions defined on $[a, b]$ and $m \leq f \leq M$ on $[a, b]$.
(ii): Let P : $a=x_{0}<x_{1}<\ldots .<x_{n}=b$ denote a partition on [$\left.a, b\right]$; Put $\Delta x_{i}=x_{i}-x_{i-1}$ and $\|P\|=\max \Delta x_{i}$.
(iii): $M_{i}(f, P):=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\} ; m_{i}(f, P):=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\}\right.\right.$. Set $\omega_{i}(f, P)=M_{i}(f, P)-m_{i}(f, P)$.
(iv): (the upper sum of f): $U(f, P):=\sum M_{i}(f, P) \Delta x_{i}$ (the lower sum of f). $L(f, P):=\sum m_{i}(f, P) \Delta x_{i}$.

Remark 1.1. It is clear that for any partition on $[a, b]$, we always have
(i) $m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$.
(ii) $L(-f, P)=-U(f, P)$ and $U(-f, P)=-L(f, P)$.

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on $[a, b]$. We have the following assertions.
(i) If $P \subseteq Q$, then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.
(ii) We always have $L(f, P) \leq U(f, Q)$.

Proof. For Part (i, we first claim that $L(f, P) \leq L(f, Q)$ if $P \subseteq Q$. By using the induction on $l:=\# Q-\# P$, it suffices to show that $L(f, P) \leq L(f, Q)$ as $l=1$. Let $P: a=x_{0}<x_{1}<\cdots<x_{n}=b$ and $Q=P \cup\{c\}$. Then $c \in\left(x_{s-1}, x_{s}\right)$ for some s. Notice that we have

$$
m_{s}(f, P) \leq \min \left\{m_{s}(f, Q), m_{s+1}(f, Q)\right\} .
$$

So, we have

$$
m_{s}(f, P)\left(x_{s}-x_{s-1}\right) \leq m_{s}(f, Q)\left(c-x_{s-1}\right)+m_{s+1}(f, Q)\left(x_{s}-c\right) .
$$

This gives the following inequality as desired.

$$
\begin{equation*}
L(f, Q)-L(f, P)=m_{s}(f, Q)\left(c-x_{s-1}\right)+m_{s+1}(f, Q)\left(x_{s}-c\right)-m_{s}(f, P)\left(x_{s}-x_{s-1}\right) \geq 0 \tag{1.1}
\end{equation*}
$$

Now by considering $-f$ in the Inequality 1.1 above, we see that $U(f, Q) \leq U(f, P)$.
For Part ($i i$), let P and Q be any pair of partitions on $[a, b]$. Notice that $P \cup Q$ is also a partition on [a,b] with $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. So, Part (i) implies that

$$
L(f, P) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, Q)
$$

The proof is complete.
Date: April 18, 2017.

The following plays an important role in this chapter.

Definition 1.3. Let f be a bounded function on $[a, b]$. The upper integral (resp. lower integral) of f over $[a, b]$, write $\overline{\int_{a}^{b}} f\left(\right.$ resp. $\left.\underline{\int_{a}^{b}} f\right)$, is defined by

$$
\overline{\int_{a}^{b}} f=\inf \{U(f, P): P \text { is a partation on }[a, b]\} .
$$

(resp.

$$
\left.\underline{\int_{a}^{b}} f=\sup \{L(f, P): P \text { is a partation on }[a, b]\} .\right)
$$

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and g both are bounded functions on $[a, b]$. With the notation as above, we always have
(i)

$$
\underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f
$$

(ii) $\underline{\int_{a}^{b}}(-f)=-\overline{\int_{a}^{b}} f$.
(iii)

$$
\underline{\int_{a}^{b}} f+\underline{\int_{a}^{b}} g \leq \underline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g
$$

Proof. Part (i) follows from Lemma 1.2 at once.
Part (ii) is clearly obtained by $L(-f, P)=-U(f, P)$.
For proving the inequality $\underline{\int_{a}^{b}} f+\underline{\int_{a}^{b} g} \leq \underline{\int_{a}^{b}}(f+g) \leq$ first. It is clear that we have $L(f, P)+L(g, P) \leq$ $L(f+g, P)$ for all partitions P on $[a, b]$. Now let P_{1} and P_{2} be any partition on $[a, b]$. Then by Lemma 1.2, we have

$$
L\left(f, P_{1}\right)+L\left(g, P_{2}\right) \leq L\left(f, P_{1} \cup P_{2}\right)+L\left(g, P_{1} \cup P_{2}\right) \leq L\left(f+g, P_{1} \cup P_{2}\right) \leq \underline{\int_{a}^{b}}(f+g)
$$

So, we have

$$
\begin{equation*}
\underline{\int_{a}^{b}} f+\underline{\int_{a}^{b}} g \leq \underline{\int_{a}^{b}}(f+g) \tag{1.2}
\end{equation*}
$$

As before, we consider $-f$ and $-g$ in the Inequality 1.2 , we get $\overline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g$ as desired.

The following example shows the strict inequality in Proposition 1.4 (iii) may hold in general.

Example 1.5. Define a function $f, g:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \in[0,1] \cap \mathbb{Q} \\ -1 & \text { otherwise }\end{cases}
$$

and

$$
g(x)= \begin{cases}-1 & \text { if } x \in[0,1] \cap \mathbb{Q} \\ 1 & \text { otherwise }\end{cases}
$$

Then it is easy to see that $f+g \equiv 0$ and

$$
\overline{\int_{0}^{1}} f=\overline{\int_{0}^{1}} g=1 \quad \text { and } \quad \underline{\int_{0}} f=\underline{\int_{0}^{1}} g=-1 .
$$

So, we have

$$
-2=\underline{\int_{a}^{b}} f+\underline{\int_{a}^{b}} g<\underline{\int_{a}^{b}}(f+g)=0=\overline{\int_{a}^{b}}(f+g)<\overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g=2
$$

We can now reaching the main definition in this chapter.

Definition 1.6. Let f be a bounded function on $[a, b]$. We say that f is Riemann integrable over $[a, b]$ if $\overline{\int_{b}^{a}} f=\underline{\int_{a}^{b}} f$. In this case, we write $\int_{a}^{b} f$ for this common value and it is called the Riemann integral of f over $[a, b]$.
Also, write $R[a, b]$ for the class of Riemann integrable functions on $[a, b]$.

Proposition 1.7. With the notation as above, $R[a, b]$ is a vector space over \mathbb{R} and the integral

$$
\int_{a}^{b}: f \in R[a, b] \mapsto \int_{a}^{b} f \in \mathbb{R}
$$

defines a linear functional, that is, $\alpha f+\beta g \in R[a, b]$ and $\int_{a}^{b}(\alpha f+\beta g)=\alpha \int_{a}^{b} f+\beta \int_{a}^{b} g$ for all $f, g \in R[a, b]$ and $\alpha, \beta \in \mathbb{R}$.
Proof. Let $f, g \in R[a, b]$ and $\alpha, \beta \in \mathbb{R}$. Notice that if $\alpha \geq 0$, it is clear that $\overline{\int_{a}^{b}} \alpha f=\alpha \int_{a}^{b} f=\alpha \int_{a}^{b} f=$ $\alpha \underline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} \alpha f$. Also, if $\alpha<0$, we have $\overline{\int_{a}^{b}} \alpha f=\alpha \underline{\int_{a}^{b}} f=\alpha \int_{a}^{b} f=\alpha \overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} \alpha f$. Therefore, we have $\int_{a}^{b} \alpha f=\alpha \int_{a}^{b} f$ for all $\alpha \in \mathbb{R}$. For showing $f+g \in R[a, b]$ and $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$, these will follows from Proposition 1.4 (iii) at once. The proof is finished.

The following result is the important characterization of a Riemann integrable function. Before showing this, we will use the following notation in the rest of this chapter.
For a partition $P: a=x_{0}<x_{1}<\cdots<x_{n}=b$ and $1 \leq i \leq n$, put

$$
\omega_{i}(f, P):=\sup \left\{\left|f(x)-f\left(x^{\prime}\right)\right|: x, x^{\prime} \in\left[x_{i-1}, x_{i}\right]\right\}
$$

It is easy to see that $U(f, P)-L(f, P)=\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}$.

Theorem 1.8. Let f be a bounded function on $[a, b]$. Then $f \in R[a, b]$ if and only if for all $\varepsilon>0$, there is a partition $P: a=x_{0}<\cdots<x_{n}=b$ on $[a, b]$ such that

$$
\begin{equation*}
0 \leq U(f, P)-L(f, P)=\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}<\varepsilon \tag{1.3}
\end{equation*}
$$

Proof. Suppose that $f \in R[a, b]$. Let $\varepsilon>0$. Then by the definition of the upper integral and lower integral of f, we can find the partitions P and Q such that $U(f, P)<\overline{\int_{a}^{b}} f+\varepsilon$ and $\underline{\int_{a}^{b}} f-\varepsilon<L(f, Q)$. By considering the partition $P \cup Q$, we see that

$$
\underline{\int_{a}^{b}} f-\varepsilon<L(f, Q) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, P)<\overline{\int_{a}^{b}} f+\varepsilon
$$

Since $\int_{a}^{b} f=\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f$, we have $0 \leq U(f, P \cup Q)-L(f, P \cup Q)<2 \varepsilon$. So, the partition $P \cup Q$ is as desired.
Conversely, let $\varepsilon>0$, assume that the Inequality 1.3 above holds for some partition P. Notice that we have

$$
L(f, P) \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq U(f, P)
$$

So, we have $0 \leq \overline{\int_{a}^{b}} f-\underline{\int_{a}^{b}} f<\varepsilon$ for all $\varepsilon>0$. The proof is finished.

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over $[a, b]$ if and only if the "size" of the discontinuous set of f is arbitrary small.

Example 1.10. Let $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}\frac{1}{p} & \text { if } x=\frac{q}{p}, \text { where } p, q \text { are relatively prime positive integers } \\ 0 & \text { otherwise }\end{cases}
$$

Then $f \in R[0,1]$.
(Notice that the set of all discontinuous points of f, say D, is just the set of all $(0,1] \cap \mathbb{Q}$. Since the set $(0,1] \cap \mathbb{Q}$ is countable, we can write $(0,1] \cap \mathbb{Q}=\left\{z_{1}, z_{2}, \ldots.\right\}$. So, if we let $m(D)$ be the "size" of the set D, then $m(D)=m\left(\bigcup_{i=1}^{\infty}\left\{z_{i}\right\}\right)=\sum_{i=1}^{\infty} m\left(\left\{z_{i}\right\}\right)=0$, in here, you may think that the size of each set $\left\{z_{i}\right\}$ is 0 .)
Proof. Let $\varepsilon>0$. By Theorem 1.8, it aims to find a partition P on $[0,1]$ such that

$$
U(f, P)-L(f, P)<\varepsilon
$$

Notice that for $x \in[0,1]$ such that $f(x) \geq \varepsilon$ if and only if $x=q / p$ for a pair of relatively prime positive integers p, q with $\frac{1}{p} \geq \varepsilon$. Since $1 \leq q \leq p$, there are only finitely many pairs of relatively prime positive integers p and q such that $f\left(\frac{q}{p}\right) \geq \varepsilon$. So, if we let $S:=\{x \in[0,1]: f(x) \geq \varepsilon\}$, then S is a finite subset of $[0,1]$. Let L be the number of the elements in S. Then, for any partition $P: a=x_{0}<\cdots<x_{n}=1$, we have

$$
\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}=\left(\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S=\emptyset}+\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset}\right) \omega_{i}(f, P) \Delta x_{i}
$$

Notice that if $\left[x_{i-1}, x_{i}\right] \cap S=\emptyset$, then we have $\omega_{i}(f, P) \leq \varepsilon$ and thus,

$$
\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S=\emptyset} \omega_{i}(f, P) \Delta x_{i} \leq \varepsilon \sum_{i:\left[x_{i-1}, x_{i}\right] \cap S=\emptyset} \Delta x_{i} \leq \varepsilon(1-0)
$$

On the other hand, since there are at most $2 L$ sub-intervals $\left[x_{i-1}, x_{i}\right]$ such that $\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset$ and $\omega_{i}(f, P) \leq 1$ for all $i=1, \ldots, n$, so, we have

$$
\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset} \omega_{i}(f, P) \Delta x_{i} \leq 1 \cdot \sum_{i:\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset} \Delta x_{i} \leq 2 L\|P\|
$$

We can now conclude that for any partition P, we have

$$
\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i} \leq \varepsilon+2 L\|P\|
$$

So, if we take a partition P with $\|P\|<\varepsilon /(2 L)$, then we have $\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i} \leq 2 \varepsilon$. The proof is finished.

Proposition 1.11. Let f be a function defined on $[a, b]$. If f is either monotone or continuous on $[a, b]$, then $f \in R[a, b]$.
Proof. We first show the case of f being monotone. We may assume that f is monotone increasing. Notice that for any partition $P: a=x_{0}<\cdots<x_{n}=b$, we have $\omega_{i}(f, P)=f\left(x_{i}\right)-f\left(x_{i-1}\right)$. So, if $\|P\|<\varepsilon$, we have
$\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}=\sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) \Delta x_{i}<\|P\| \sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)=\|P\|(f(b)-f(a))<\varepsilon(f(b)-f(a))$.
Therefore, $f \in R[a, b]$ if f is monotone.
Suppose that f is continuous on $[a, b]$. Then f is uniform continuous on $[a, b]$. Then for any $\varepsilon>0$, there is $\delta>0$ such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$ as $x, x^{\prime} \in[a, b]$ with $\left|x-x^{\prime}\right|<\delta$. So, if we choose a partition P with $\|P\|<\delta$, then $\omega_{i}(f, P)<\varepsilon$ for all i. This implies that

$$
\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i} \leq \varepsilon \sum_{i=1}^{n} \Delta x_{i}=\varepsilon(b-a)
$$

The proof is complete.
Proposition 1.12. We have the following assertions.
(i) If $f, g \in R[a, b]$ with $f \leq g$, then $\int_{a}^{b} f \leq \int_{a}^{b} g$.
(ii) If $f \in R[a, b]$, then the absolute valued function $|f| \in R[a, b]$. In this case, we have $\left|\int_{a}^{b} f\right| \leq$ $\int_{a}^{b}|f|$.
Proof. For Part (i), it is clear that we have the inequality $U(f, P) \leq U(g, P)$ for any partition P. So, we have $\int_{a}^{b} f=\overline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} g=\int_{a}^{b} g$.
For Part (ii), the integrability of $|f|$ follows immediately from Theorem 1.8 and the simple inequality $\left||f|\left(x^{\prime}\right)-|f|\left(x^{\prime \prime}\right)\right| \leq\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|$ for all $x^{\prime}, x^{\prime \prime} \in[a, b]$. Thus, we have $U(|f|, P)-L(|f|, P) \leq$ $U(f, P)-L(f, P)$ for any partition P on $[a, b]$.
Finally, since we have $-f \leq|f| \leq f$, by Part (i), we have $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$ at once.
Proposition 1.13. Let $a<c<b$. We have $f \in R[a, b]$ if and only if the restrictions $\left.f\right|_{[a, c]} \in R[a, c]$ and $\left.f\right|_{[c, b]} \in R[c, b]$. In this case we have

$$
\begin{equation*}
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f \tag{1.4}
\end{equation*}
$$

Proof. Let $f_{1}:=\left.f\right|_{[a, c]}$ and $f_{2}:=\left.f\right|_{[c, b]}$.
It is clear that we always have

$$
U\left(f_{1}, P_{1}\right)-L\left(f_{1}, P_{1}\right)+U\left(f_{2}, P_{2}\right)-L\left(f_{2}, P_{2}\right)=U(P, f)-L(f, P)
$$

for any partition P_{1} on $[a, c]$ and P_{2} on $[c, b]$ with $P=P_{1} \cup P_{2}$.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since $f \in R[a, b]$, for any $\varepsilon>0$, there is a partition Q on $[a, b]$
such that $U(f, Q)-L(f, Q)<\varepsilon$ by Theorem 1.8. Notice that there are partitions P_{1} and P_{2} on $[a, c]$ and $[c, b]$ respectively such that $P:=Q \cup\{c\}=P_{1} \cup P_{2}$. Thus, we have

$$
U\left(f_{1}, P_{1}\right)-L\left(f_{1}, P_{1}\right)+U\left(f_{2}, P_{2}\right)-L\left(f_{2}, P_{2}\right)=U(f, P)-L(f, P) \leq U(f, Q)-L(f, Q)<\varepsilon .
$$

So, we have $f_{1} \in R[a, c]$ and $f_{2} \in R[c, b]$.
It remains to show the Equation 1.4 above. Notice that for any partition P_{1} on $[a, c]$ and P_{2} on $[c, b]$, we have

$$
L\left(f_{1}, P_{1}\right)+L\left(f_{2}, P_{2}\right)=L\left(f, P_{1} \cup P_{2}\right) \leq \underline{\int_{a}^{b}} f=\int_{a}^{b} f
$$

So, we have $\int_{a}^{c} f+\int_{c}^{b} f \leq \int_{a}^{b} f$. Then the inverse inequality can be obtained at once by considering the function $-f$. Then the resulted is obtained by using Theorem 1.8.

2. Fundamental Theorem of Calculus

Now if $f \in R[a, b]$, then by Proposition 1.13 , we can define a function $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(c)= \begin{cases}0 & \text { if } c=a \tag{2.1}\\ \int_{a}^{c} f & \text { if } a<c \leq b .\end{cases}
$$

Theorem 2.1. Fundamental Theorem of Calculus: With the notation as above, assume that $f \in R[a, b]$, we have the following assertion.
(i) If there is a continuous function H on $[a, b]$ which is differentiable on (a, b) with $H^{\prime}=f$, then $\int_{a}^{b} f=H(b)-H(a)$. In this case, H is called an indefinite integral of f. (note: if H_{1} and H_{2} both are the indefinite integrals of f, then by the Mean Value Theorem, we have $H_{2}=H_{1}+$ constant $)$.
(ii) The function F defined as in Eq. 2.1 above is continuous on $[a, b]$. Furthermore, if f is continuous on $[a, b]$, then F^{\prime} exists on (a, b) and $F^{\prime}=f$ on (a, b).

Proof. For Part (i), notice that for any partition $P: a=x_{0}<\cdots<x_{n}=b$, then by the Mean Value Theorem, for each $\left[x_{i-1}, x_{i}\right]$, there is $\xi \in\left(x_{i-1}, x_{i}\right)$ such that $F\left(x_{i}\right)-F\left(x_{i-1}\right)=F^{\prime}(\xi) \Delta x_{i}=f(\xi) \Delta x_{i}$. So, we have

$$
L(f, P) \leq \sum f(\xi) \Delta x_{i}=\sum F\left(x_{i}\right)-F\left(x_{i-1}\right)=F(b)-F(a) \leq U(f, P)
$$

for all partitions P on $[a, b]$. This gives

$$
\int_{a}^{b} f=\underline{\int_{a}^{b}} f \leq F(b)-F(a) \leq \overline{\int_{a}^{b}} f=\int_{a}^{b} f
$$

as desired.
For showing the continuity of F in Part (ii), let $a<c<x<b$. If $|f| \leq M$ on $[a, b]$, then we have $|F(x)-F(c)|=\left|\int_{c}^{x} f\right| \leq M(x-c)$. So, $\lim _{x \rightarrow c+} F(x)=F(c)$. Similarly, we also have $\lim _{x \rightarrow c-} F(x)=$ $F(c)$. Thus F is continuous on $[a, b]$.
Now assume that f is continuous on $[a, b]$. Notice that for any $t>0$ with $a<c<c+t<b$, we have

$$
\inf _{x \in[c, c+t]} f(x) \leq \frac{1}{t}(F(c+t)-F(c))=\frac{1}{t} \int_{c}^{c+t} f \leq \sup _{x \in[c, c+t]} f(x) .
$$

Since f is continuous at c, we see that $\lim _{t \rightarrow 0+} \frac{1}{t}(F(c+t)-F(c))=f(c)$. Similarly, we have $\lim _{t \rightarrow 0-} \frac{1}{t}(F(c+$ $t)-F(c))=f(c)$. So, we have $F^{\prime}(c)=f(c)$ as desired. The proof is finished.

3. Riemann Sums

Definition 3.1. For each bounded function f on $[a, b]$. Call $R\left(f, P,\left\{\xi_{i}\right\}\right):=\sum f\left(\xi_{i}\right) \Delta x_{i}$, where $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$, the Riemann sum of f over $[a, b]$.
We say that the Riemann sum $R\left(f, P,\left\{\xi_{i}\right\}\right)$ converges to a number A as $\|P\| \rightarrow 0$ if for any $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-R\left(f, P,\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

whenever $\|P\|<\delta$ and for any $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Lemma 3.2. $f \in R[a, b]$ if and only if for any $\varepsilon>0$, there is $\delta>0$ such that $U(f, P)-L(f, P)<\varepsilon$ whenever $\|P\|<\delta$.
Proof. The converse follows from Theorem 1.8.
Assume that f is integrable over $[a, b]$. Let $\varepsilon>0$. Then there is a partition $Q: a=y_{0}<\ldots<y_{l}=b$ on $[a, b]$ such that $U(f, Q)-L(f, Q)<\varepsilon$. Now take $0<\delta<\varepsilon / l$. Suppose that $P: a=x_{0}<\ldots<x_{n}=b$ with $\|P\|<\delta$. Then we have

$$
U(f, P)-L(f, P)=I+I I
$$

where

$$
I=\sum_{i: Q \cap\left[x_{i-1}, x_{i}\right]=\emptyset} \omega_{i}(f, P) \Delta x_{i}
$$

and

$$
I I=\sum_{i: Q \cap\left[x_{i-1}, x_{i}\right] \neq \emptyset} \omega_{i}(f, P) \Delta x_{i}
$$

Notice that we have

$$
I \leq U(f, Q)-L(f, Q)<\varepsilon
$$

and

$$
I I \leq(M-m) \sum_{i: Q \cap\left[x_{i-1}, x_{i}\right] \neq \emptyset} \Delta x_{i} \leq(M-m) \cdot 2 l \cdot \frac{\varepsilon}{l}=2(M-m) \varepsilon
$$

The proof is finished.

Theorem 3.3. $f \in R[a, b]$ if and only if the Riemann sum $R\left(f, P,\left\{\xi_{i}\right\}\right)$ is convergent. In this case, $R\left(f, P,\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$ as $\|P\| \rightarrow 0$.
Proof. For the proof (\Rightarrow) : we first note that we always have

$$
L(f, P) \leq R\left(f, P,\left\{\xi_{i}\right\}\right) \leq U(f, P)
$$

and

$$
L(f, P) \leq \int_{a}^{b} f(x) d x \leq U(f, P)
$$

for any partition P and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Now let $\varepsilon>0$. Lemma 3.2 gives $\delta>0$ such that $U(f, P)-L(f, P)<\varepsilon$ as $\|P\|<\delta$. Then we have

$$
\left|\int_{a}^{b} f(x) d x-R\left(f, P,\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

as $\|P\|<\delta$ and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$. The necessary part is proved and $R\left(f, P,\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$.
For (\Leftarrow) : assume that there is a number A such that for any $\varepsilon>0$, there is $\delta>0$, we have

$$
A-\varepsilon<R\left(f, P,\left\{\xi_{i}\right\}\right)<A+\varepsilon
$$

for any partition P with $\|P\|<\delta$ and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Now fix a partition P with $\|P\|<\delta$. Then for each $\left[x_{i-1}, x_{i}\right]$, choose $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ such that $M_{i}(f, P)-\varepsilon \leq f\left(\xi_{i}\right)$. This implies that we have

$$
U(f, P)-\varepsilon(b-a) \leq R\left(f, P,\left\{\xi_{i}\right\}\right)<A+\varepsilon
$$

So we have shown that for any $\varepsilon>0$, there is a partition \mathcal{P} such that

$$
\begin{equation*}
\overline{\int_{a}^{b}} f(x) d x \leq U(f, P) \leq A+\varepsilon(1+b-a) \tag{3.1}
\end{equation*}
$$

By considering $-f$, note that the Riemann sum of $-f$ will converge to $-A$. The inequality 3.1 will imply that for any $\varepsilon>0$, there is a partition P such that

$$
A-\varepsilon(1+b-a) \leq \underline{\int_{a}^{b}} f(x) d x \leq \overline{\int_{a}^{b}} f(x) d x \leq A+\varepsilon(1+b-a)
$$

The proof is finished.

Theorem 3.4. Let $f \in R[c, d]$ and let $\phi:[a, b] \longrightarrow[c, d]$ be a strictly increasing C^{1} function with $f(a)=c$ and $f(b)=d$.
Then $f \circ \phi \in R[a, b]$, moreover, we have

$$
\int_{c}^{d} f(x) d x=\int_{a}^{b} f(\phi(t)) \phi^{\prime}(t) d t
$$

Proof. Let $A=\int_{c}^{d} f(x) d x$. By Theorem 3.3, we need to show that for all $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|<\varepsilon
$$

for all $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ whenever $Q: a=t_{0}<\ldots<t_{m}=b$ with $\|Q\|<\delta$.
Now let $\varepsilon>0$. Then by Lemma 3.2 and Theorem 3.3, there is $\delta_{1}>0$ such that

$$
\begin{equation*}
\left|A-\sum f\left(\eta_{k}\right) \triangle x_{k}\right|<\varepsilon \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \omega_{k}(f, P) \triangle x_{k}<\varepsilon \tag{3.3}
\end{equation*}
$$

for all $\eta_{k} \in\left[x_{k-1}, x_{k}\right]$ whenever $P: c=x_{0}<\ldots<x_{m}=d$ with $\|P\|<\delta_{1}$.
Now put $x=\phi(t)$ for $t \in[a, b]$.
Now since ϕ and ϕ^{\prime} are continuous on $[a, b]$, there is $\delta>0$ such that $\left|\phi(t)-\phi\left(t^{\prime}\right)\right|<\delta_{1}$ and $\mid \phi^{\prime}(t)-$ $\phi^{\prime}\left(t^{\prime}\right) \mid<\varepsilon$ for all t, t^{\prime} in $[a, b]$ with $\left|t-t^{\prime}\right|<\delta$.
Now let $Q: a=t_{0}<\ldots<t_{m}=b$ with $\|Q\|<\delta$. If we put $x_{k}=\phi\left(t_{k}\right)$, then $P: c=x_{0}<\ldots<x_{m}=d$ is a partition on $[c, d]$ with $\|P\|<\delta_{1}$ because ϕ is strictly increasing.
Note that the Mean Value Theorem implies that for each $\left[t_{k-1}, t_{k}\right]$, there is $\xi_{k}^{*} \in\left(t_{k-1}, t_{k}\right)$ such that

$$
\Delta x_{k}=\phi\left(t_{k}\right)-\phi\left(t_{k-1}\right)=\phi^{\prime}\left(\xi_{k}^{*}\right) \Delta t_{k}
$$

This yields that

$$
\begin{equation*}
\left|\triangle x_{k}-\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|<\varepsilon \Delta t_{k} \tag{3.4}
\end{equation*}
$$

for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ for all $k=1, \ldots, m$ because of the choice of δ.
Now for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$, we have

$$
\begin{align*}
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| & \leq\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right| \\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \tag{3.5}\\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|
\end{align*}
$$

Notice that inequality 3.2 implies that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right|=\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \triangle x_{k}\right|<\varepsilon .
$$

Also, since we have $\left|\phi^{\prime}\left(\xi_{k}^{*}\right)-\phi^{\prime}\left(\xi_{k}\right)\right|<\varepsilon$ for all $k=1, . ., m$, we have

$$
\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \Delta t_{k}-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}\right| \leq M(b-a) \varepsilon
$$

where $|f(x)| \leq M$ for all $x \in[c, d]$.
On the other hand, by using inequality 3.4 we have

$$
\left|\phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}\right| \leq \triangle x_{k}+\varepsilon \triangle t_{k}
$$

for all k. This, together with inequality 3.3 imply that

$$
\begin{aligned}
& \left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \\
& \leq \sum \omega_{k}(f, P)\left|\phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}\right|\left(\because \phi\left(\xi_{k}^{*}\right), \phi\left(\xi_{k}\right) \in\left[x_{k-1}, x_{k}\right]\right) \\
& \leq \sum \omega_{k}(f, P)\left(\triangle x_{k}+\varepsilon \triangle t_{k}\right) \\
& \leq \varepsilon+2 M(b-a) \varepsilon
\end{aligned}
$$

Finally by inequality 3.5 , we have

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}\right| \leq \varepsilon+M(b-a) \varepsilon+\varepsilon+2 M(b-a) \varepsilon .
$$

The proof is finished.

4. Improper Riemann Integrals

Definition 4.1. Let $-\infty<a<b<\infty$.
(i) Let f be a function defined on $[a, \infty)$. Assume that the restriction $\left.f\right|_{[a, T]}$ is integrable over $[a, T]$ for all $T>a$. Put $\int_{a}^{\infty} f:=\lim _{T \rightarrow \infty} \int_{a}^{T} f$ if this limit exists.
Similarly, we can define $\int_{-\infty}^{b} f$ if f is defined on $(-\infty, b]$.
(ii) If f is defined on ($a, b]$ and $\left.f\right|_{[c, b]} \in R[c, b]$ for all $a<c<b$. Put $\int_{a}^{b} f:=\lim _{c \rightarrow a+} \int_{c}^{b} f$ if it exists.
Similarly, we can define $\int_{a}^{b} f$ if f is defined on $[a, b)$.
(iii) As f is defined on \mathbb{R}, if $\int_{0}^{\infty} f$ and $\int_{-\infty}^{0} f$ both exist, then we put $\int_{-\infty}^{\infty} f=\int_{-\infty}^{0} f+\int_{0}^{\infty} f$.

In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the integrals are convergent.
Example 4.2. Define (formally) an improper integral $\Gamma(s)$ (called the Γ-function) as follows:

$$
\Gamma(s):=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if $s>0$.

Proof. Put $I(s):=\int_{0}^{1} x^{s-1} e^{-x} d x$ and $I I(s):=\int_{1}^{\infty} x^{s-1} e^{-x} d x$. We first claim that the integral $I I(s)$ is convergent for all $s \in \mathbb{R}$.
In fact, if we fix $s \in \mathbb{R}$, then we have

$$
\lim _{x \rightarrow \infty} \frac{x^{s-1}}{e^{x / 2}}=0
$$

So there is $M>1$ such that $\frac{x^{s-1}}{e^{x / 2}} \leq 1$ for all $x \geq M$. Thus we have

$$
0 \leq \int_{M}^{\infty} x^{s-1} e^{-x} d x \leq \int_{M}^{\infty} e^{-x / 2} d x<\infty
$$

Therefore we need to show that the integral $I(s)$ is convergent if and only if $s>0$.
Note that for $0<\eta<1$, we have

$$
0 \leq \int_{\eta}^{1} x^{s-1} e^{-x} d x \leq \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{1}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -\ln \eta & \text { otherwise }\end{cases}
$$

Thus the integral $I(s)=\lim _{\eta \rightarrow 0+} \int_{\eta}^{1} x^{s-1} e^{-x} d x$ is convergent if $s>0$.
Conversely, we also have

$$
\int_{\eta}^{1} x^{s-1} e^{-x} d x \geq e^{-1} \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{e^{-1}}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -e^{-1} \ln \eta & \text { otherwise }\end{cases}
$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} d x$ is divergent as $\eta \rightarrow 0+$. The result follows.

5. Uniform Convergence of a Sequence of Differentiable Functions

Proposition 5.1. Let $f_{n}:(a, b) \longrightarrow \mathbb{R}$ be a sequence of functions. Assume that it satisfies the following conditions:
(i) : $f_{n}(x)$ point-wise converges to a function $f(x)$ on (a, b);
(ii) : each f_{n} is a C^{1} function on (a, b);
(iii) : $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b).

Then f is a C^{1}-function on (a, b) with $f^{\prime}=g$.
Proof. Fix $c \in(a, b)$. Then for each x with $c<x<b$ (similarly, we can prove it in the same way as $a<x<c$), the Fundamental Theorem of Calculus implies that

$$
f_{n}(x)=\int_{c}^{x} f^{\prime}(t) d t+f_{n}(c)
$$

Since $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b), we see that

$$
\int_{c}^{x} f_{n}^{\prime}(t) d t \longrightarrow \int_{c}^{x} g(t) d t
$$

This gives

$$
\begin{equation*}
f(x)=\int_{c}^{x} g(t) d t+f(c) \tag{5.1}
\end{equation*}
$$

for all $x \in(c, b)$. Similarly, we have $f(x)=\int_{c}^{x} g(t) d t+f(c)$ for all $x \in(a, b)$.
On the other hand, g is continuous on (a, b) since each f_{n}^{\prime} is continuous and $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b). Equation 5.1 will tell us that f^{\prime} exists and $f^{\prime}=g$ on (a, b). The proof is finished.

Proposition 5.2. Let $\left(f_{n}\right)$ be a sequence of differentiable functions defined on (a, b). Assume that
(i): there is a point $c \in(a, b)$ such that $\lim f_{n}(c)$ exists;
(ii): f_{n}^{\prime} converges uniformly to a function g on (a, b).

Then
(a): f_{n} converges uniformly to a function f on (a, b);
(b): f is differentiable on (a, b) and $f^{\prime}=g$.

Proof. For Part (a), we will make use the Cauchy theorem.
Let $\varepsilon>0$. Then by the assumptions (i) and (ii), there is a positive integer N such that

$$
\left|f_{m}(c)-f_{n}(c)\right|<\varepsilon \quad \text { and } \quad\left|f_{m}^{\prime}(x)-f_{n}^{\prime}(x)\right|<\varepsilon
$$

for all $m, n \geq N$ and for all $x \in(a, b)$. Now fix $c<x<b$ and $m, n \geq N$. To apply the Mean Value Theorem for $f_{m}-f_{n}$ on (c, x), then there is a point ξ between c and x such that

$$
\begin{equation*}
f_{m}(x)-f_{n}(x)=f_{m}(c)-f_{n}(c)+\left(f_{m}^{\prime}(\xi)-f_{n}^{\prime}(\xi)\right)(x-c) \tag{5.2}
\end{equation*}
$$

This implies that

$$
\left|f_{m}(x)-f_{n}(x)\right| \leq\left|f_{m}(c)-f_{n}(c)\right|+\left|f_{m}^{\prime}(\xi)-f_{n}^{\prime}(\xi)\right||x-c|<\varepsilon+(b-a) \varepsilon
$$

for all $m, n \geq N$ and for all $x \in(c, b)$. Similarly, when $x \in(a, c)$, we also have

$$
\left|f_{m}(x)-f_{n}(x)\right|<\varepsilon+(b-a) \varepsilon
$$

So Part (a) follows.
Let f be the uniform limit of $\left(f_{n}\right)$ on (a, b)
For Part (b), we fix $u \in(a, b)$. We are going to show

$$
\lim _{x \rightarrow u} \frac{f(x)-f(u)}{x-u}=g(u)
$$

Let $\varepsilon>0$. Since $\left(f_{n}^{\prime}\right)$ is uniformly convergent on (a, b), there is $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|f_{m}^{\prime}(x)-f_{n}^{\prime}(x)\right|<\varepsilon \tag{5.3}
\end{equation*}
$$

for all $m, n \geq N$ and for all $x \in(a, b)$
Note that for all $m \geq N$ and $x \in(a, b) \backslash\{u\}$, applying the Mean value Theorem for $f_{m}-f_{N}$ as before, we have

$$
\frac{f_{m}(x)-f_{N}(x)}{x-u}=\frac{f_{m}(u)-f_{N}(u)}{x-u}+\left(f_{m}^{\prime}(\xi)-f_{N}^{\prime}(\xi)\right)
$$

for some ξ between u and x.
So Eq.5.3 implies that

$$
\begin{equation*}
\left|\frac{f_{m}(x)-f_{m}(u)}{x-u}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right| \leq \varepsilon \tag{5.4}
\end{equation*}
$$

for all $m \geq N$ and for all $x \in(a, b)$ with $x \neq u$.
Taking $m \rightarrow \infty$ in Eq.5.4, we have

$$
\left|\frac{f(x)-f(u)}{x-u}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right| \leq \varepsilon
$$

Hence we have

$$
\begin{aligned}
\left|\frac{f(x)-f(u)}{x-u}-f_{N}^{\prime}(u)\right| & \leq\left|\frac{f(x)-f(u)}{x-c}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right|+\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right| \\
& \leq \varepsilon+\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right|
\end{aligned}
$$

So if we can take $0<\delta$ such that $\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right|<\varepsilon$ for $0<|x-u|<\delta$, then we have

$$
\begin{equation*}
\left|\frac{f(x)-f(u)}{x-u}-f_{N}^{\prime}(u)\right| \leq 2 \varepsilon \tag{5.5}
\end{equation*}
$$

for $0<|x-u|<\delta$. On the other hand, by the choice of N, we have $\left|f_{m}^{\prime}(y)-f_{N}^{\prime}(y)\right|<\varepsilon$ for all $y \in(a, b)$ and $m \geq N$. So we have $\left|g(u)-f_{N}^{\prime}(u)\right| \leq \varepsilon$. This together with Eq.5.5 give

$$
\left|\frac{f(x)-f(u)}{x-u}-g(u)\right| \leq 3 \varepsilon
$$

as $0<|x-u|<\delta$, that is we have

$$
\lim _{x \rightarrow u} \frac{f(x)-f(u)}{x-u}=g(u)
$$

The proof is finished.

Remark 5.3. The uniform convergence assumption of $\left(f_{n}^{\prime}\right)$ in Propositions 5.1 and 5.2 is essential.

Example 5.4. Let $f_{n}(x):=\tan ^{-1} n x$ for $x \in(-1,1)$. Then we have

$$
f(x):=\lim _{n} \tan ^{-1} n x= \begin{cases}\pi / 2 & \text { if } x>0 ; \\ 0 & \text { if } x=0 ; \\ -\pi / 2 & \text { if } x<0\end{cases}
$$

Also $g(x):=\lim _{n} f_{n}^{\prime}(x)=\lim _{n} 1 /\left(1+n^{2} x^{2}\right)=0$ for all $x \in(-1,1)$. So Propositions 5.1 and 5.2 does not hold. Note that $\left(f_{n}^{\prime}\right)$ does not converge uniformly to g on $(-1,1)$.

6. Dini's Theorem

Recall that a subset A of \mathbb{R} is said to be compact if for any family open intervals cover $\left\{J_{i}\right\}_{i \in I}$ of A, that is, each J_{i} is and open interval and $A \subseteq \bigcup_{i \in I} J_{i}$, we can find finitely many $J_{i_{1}}, \ldots, J_{i_{N}}$ such that $A \subseteq J_{i_{1}} \cup \cdots \cup J_{i_{N}}$.

The following is a very important result.

Theorem 6.1. A subset A of \mathbb{R} is compact if and only if any sequence $\left(x_{n}\right)$ in A has a convergent subsequence $\left(x_{n_{k}}\right)$ such that $\lim _{k} x_{n_{k}} \in A$. In particular, every closed and bounded interval is compact by using the Bolzano-Weierstrass Theorem.

Proposition 6.2. (Dini's Theorem): Let A be a compact subset of \mathbb{R} and $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of continuous functions defined on A. Suppose that
(i) for each $x \in A$, we have $f_{n}(x) \leq f_{n+1}(x)$ for all $n=1,2 \ldots$;
(ii) the pointwise limit $f(x):=\lim _{n} f_{n}(x)$ exists for all $x \in A$;
(iii) f is continuous on A.

Then f_{n} converges to f uniformly on A.
Proof. Let $g_{n}:=f-f_{n}$ defined on A. Then each g_{n} is continuous and $g_{n}(x) \downarrow 0$ pointwise on A. It suffices to show that g_{n} converges to 0 uniformly on A.
Method I: Suppose not. Then there is $\varepsilon>0$ such that for all positive integer N, we have

$$
\begin{equation*}
g_{n}\left(x_{n}\right) \geq \varepsilon \tag{6.1}
\end{equation*}
$$

for some $n \geq N$ and some $x_{n} \in A$. From this, by passing to a subsequence we may assume that $g_{n}\left(x_{n}\right) \geq \varepsilon$ for all $n=1,2, \ldots$. Then by using the compactness of A, Theorem 6.1 gives a convergent subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ in A. Let $z:=\lim _{k} x_{n_{k}} \in A$. Since $g_{n_{k}}(z) \downarrow 0$ as $k \rightarrow \infty$. So, there is a positive integer K such that $0 \leq g_{n_{K}}(z)<\varepsilon / 2$. Since $g_{n_{K}}$ is continuous at z and $\lim _{i} x_{n_{i}}=z$, we have $\lim _{i} g_{n_{K}}\left(x_{n_{i}}\right)=g_{n_{K}}(z)$. So, we can choose i large enough such that $i>K$

$$
g_{n_{i}}\left(x_{n_{i}}\right) \leq g_{n_{K}}\left(x_{n_{i}}\right)<\varepsilon / 2
$$

because $g_{m}\left(x_{n_{i}}\right) \downarrow 0$ as $m \rightarrow \infty$. This contradicts to the Inequality 6.1.
Method II: Let $\varepsilon>0$. Fix $x \in A$. Since $g_{n}(x) \downarrow 0$, there is $N(x) \in \mathbb{N}$ such that $0 \leq g_{n}(x)<\varepsilon$ for all $n \geq N(x)$. Since $g_{N(x)}$ is continuous, there is $\delta(x)>0$ such that $g_{N(x)}(y)<\varepsilon$ for all $y \in A$ with $|x-y|<\delta(x)$. If we put $J_{x}:=(x-\delta(x), x+\delta(x))$, then $A \subseteq \bigcup_{x \in A} J_{x}$. Then by the compactness of A, there are finitely many x_{1}, \ldots, x_{m} in A such that $A \subseteq J_{x_{1}} \cup \cdots \cup J_{x_{m}}$. Put $N:=\max \left(N\left(x_{1}\right), \ldots, N\left(x_{m}\right)\right)$. Now if $y \in A$, then $y \in J\left(x_{i}\right)$ for some $1 \leq i \leq m$. This implies that

$$
g_{n}(y) \leq g_{N\left(x_{i}\right)}(y)<\varepsilon
$$

for all $n \geq N \geq N\left(x_{i}\right)$. The proof is finished.

7. Absolutely convergent series

Throughout this section, let $\left(a_{n}\right)$ be a sequence of complex numbers.
Definition 7.1. We say that a series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent if $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$.
Also a convergent series $\sum_{n=1}^{\infty} a_{n}$ is said to be conditionally convergent if it is not absolute convergent.
Example 7.2. Important Example : The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\alpha}}$ is conditionally convergent when $0<\alpha \leq 1$.
This example shows us that a convergent improper integral may fail to the absolute convergence or square integrable property.
For instance, if we consider the function $f:[1, \infty) \longrightarrow \mathbb{R}$ given by

$$
f(x)=\frac{(-1)^{n+1}}{n^{\alpha}} \quad \text { if } \quad n \leq x<n+1
$$

If $\alpha=1 / 2$, then $\int_{1}^{\infty} f(x) d x$ is convergent but it is neither absolutely convergent nor square integrable.

Notation 7.3. Let $\sigma:\{1,2 \ldots\} \longrightarrow\{1,2 \ldots$.$\} be a bijection. A formal series \sum_{n=1}^{\infty} a_{\sigma(n)}$ is called an rearrangement of $\sum_{n=1}^{\infty} a_{n}$.

Example 7.4. In this example, we are going to show that there is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ is divergent although the original series is convergent. In fact, it is conditionally convergent.
We first notice that the series $\sum_{i} \frac{1}{2 i-1}$ diverges to infinity. Thus for each $M>0$, there is a positive integer N such that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{2 i-1} \geq M \tag{*}
\end{equation*}
$$

for all $n \geq N$. Then there is $N_{1} \in \mathbb{N}$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}>1
$$

By using (*) again, there is a positive integer N_{2} with $N_{1}<N_{2}$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}+\sum_{N_{1}<i \leq N_{2}} \frac{1}{2 i-1}-\frac{1}{4}>2
$$

To repeat the same procedure, we can find a positive integers subsequence $\left(N_{k}\right)$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}+\sum_{N_{1}<i \leq N_{2}} \frac{1}{2 i-1}-\frac{1}{4}+\cdots \cdots \cdots-\sum_{N_{k-1}<i \leq N_{k}} \frac{1}{2 i-1}-\frac{1}{2 k}>k
$$

for all positive integers k. So if we let $a_{n}=\frac{(-1)^{n+1}}{n}$, then one can find a bijection $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that the series $\sum_{i=1}^{\infty} a_{\sigma(i)}$ is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ and diverges to infinity. The proof is finished.

Theorem 7.5. Let $\sum_{n=1}^{\infty} a_{n}$ be an absolutely convergent series. Then for any rearrangement $\sum_{n=1}^{\infty} a_{\sigma(n)}$ is also absolutely convergent. Moreover, we have $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{\sigma(n)}$.

Proof. Let $\sigma:\{1,2 \ldots\} \longrightarrow\{1,2 \ldots\}$ be a bijection as before.
We first claim that $\sum_{n} a_{\sigma(n)}$ is also absolutely convergent.
Let $\varepsilon>0$. Since $\sum_{n}\left|a_{n}\right|<\infty$, there is a positive integer N such that

$$
\begin{equation*}
\left|a_{N+1}\right|+\cdots \cdots \cdots+\left|a_{N+p}\right|<\varepsilon \tag{*}
\end{equation*}
$$

for all $p=1,2 \ldots$. Notice that since σ is a bijection, we can find a positive integer M such that $M>\max \{j: 1 \leq \sigma(j) \leq N\}$. Then $\sigma(i) \geq N$ if $i \geq M$. This together with $(*)$ imply that if $i \geq M$ and $p \in \mathbb{N}$, we have

$$
\left|a_{\sigma(i+1)}\right|+\cdots \cdots \cdots \cdot\left|a_{\sigma(i+p)}\right|<\varepsilon
$$

Thus the series $\sum_{n} a_{\sigma(n)}$ is absolutely convergent by the Cauchy criteria.
Finally we claim that $\sum_{n} a_{n}=\sum_{n} a_{\sigma(n)}$. Put $l=\sum_{n} a_{n}$ and $l^{\prime}=\sum_{n} a_{\sigma(n)}$. Now let $\varepsilon>0$. Then there is $N \in \mathbb{N}$ such that

$$
\left|l-\sum_{n=1}^{N} a_{n}\right|<\varepsilon \quad \text { and } \quad\left|a_{N+1}\right|+\cdots \cdots+\left|a_{N+p}\right|<\varepsilon \cdots \cdots \cdots(* *)
$$

for all $p \in \mathbb{N}$. Now choose a positive integer M large enough so that $\{1, \ldots, N\} \subseteq\{\sigma(1), \ldots, \sigma(M)\}$ and $\left|l^{\prime}-\sum_{i=1}^{M} a_{\sigma(i)}\right|<\varepsilon$. Notice that since we have $\{1, \ldots, N\} \subseteq\{\sigma(1), \ldots, \sigma(M)\}$, the condition $(* *)$ gives

$$
\left|\sum_{n=1}^{N} a_{n}-\sum_{i=1}^{M} a_{\sigma(i)}\right| \leq \sum_{N<i<\infty}\left|a_{i}\right| \leq \varepsilon .
$$

We can now conclude that

$$
\left|l-l^{\prime}\right| \leq\left|l-\sum_{n=1}^{N} a_{n}\right|+\left|\sum_{n=1}^{N} a_{n}-\sum_{i=1}^{M} a_{\sigma(i)}\right|+\left|\sum_{i=1}^{M} a_{\sigma(i)}-l^{\prime}\right| \leq 3 \varepsilon .
$$

The proof is complete.

8. Power series

Throughout this section, let

$$
\begin{equation*}
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \tag{*}
\end{equation*}
$$

denote a formal power series, where $a_{i} \in \mathbb{R}$.
Lemma 8.1. Suppose that there is $c \in \mathbb{R}$ with $c \neq 0$ such that $f(c)$ is convergent. Then
(i) : $f(x)$ is absolutely convergent for all x with $|x|<|c|$.
(ii) : f converges uniformly on $[-\eta, \eta]$ for any $0<\eta<|c|$.

Proof. For Part (i), note that since $f(c)$ is convergent, then $\lim a_{n} c^{n}=0$. So there is a positive integer N such that $\left|a_{n} c^{n}\right| \leq 1$ for all $n \geq N$. Now if we fix $|x|<|c|$, then $|x / c|<1$. Therefore, we have

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|\left|x^{n}\right| \leq \sum_{n=1}^{N-1}\left|a _ { n } \left\|x^{n}\left|+\sum_{n \geq N}\right| a_{n} c^{n}| | x /\left.c\right|^{n} \leq \sum_{n=1}^{N-1}\left|a_{n} \| x^{n}\right|+\sum_{n \geq N}|x / c|^{n}<\infty\right.\right.
$$

So Part (i) follows.
Now for Part (ii), if we fix $0<\eta<|c|$, then $\left|a_{n} x^{n}\right| \leq\left|a_{n} \eta\right|^{n}$ for all n and for all $x \in[-\eta, \eta]$. On the other hand, we have $\sum_{n}\left|a_{n} \eta^{n}\right|<\infty$ by Part (i). So f converges uniformly on [$-\eta, \eta$] by the M-test. The proof is finished.

Remark 8.2. In Lemma 8.9(ii), notice that if $f(c)$ is convergent, it does not imply f converges uniformly on $[-c, c]$ in general.
For example, $f(x):=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n}$. Then $f(-1)$ is convergent but $f(1)$ is divergent.
Definition 8.3. Call the set $\operatorname{dom} f:=\{x \in \mathbb{R}: f(c)$ is convergent $\}$ the domain of convergence of f for convenience. Let $0 \leq r:=\sup \{|c|: c \in \operatorname{dom} f\} \leq \infty$. Then r is called the radius of convergence of f.

Remark 8.4. Notice that by Lemma 8.9, then the domain of convergence of f must be the interval with the end points $\pm r$ if $0<r<\infty$.
When $r=0$, then $\operatorname{dom} f=\{0\}$.
Finally, if $r=\infty$, then $\operatorname{dom} f=\mathbb{R}$.

Example 8.5. If $f(x)=\sum_{n=0}^{\infty} n!x^{n}$, then $r=0+$. In fact, notice that if we fix a non-zero number x and consider $\lim _{n}\left|(n+1)!x^{n+1}\right| /\left|n!x^{n}\right|=\infty$, then by the ratio test $f(x)$ must be divergent for any $x \neq 0$. So $r=0$ and $\operatorname{dom} f=(0)$.

Example 8.6. Let $f(x)=1+\sum_{n=1}^{\infty} x^{n} / n^{n}$. Notice that we have $\lim _{n}\left|x^{n} / n^{n}\right|^{1 / n}=0$ for all x. So the root test implies that $f(x)$ is convergent for all x and then $r=\infty$ and $\operatorname{dom} f=\mathbb{R}$.

Example 8.7. Let $f(x)=1+\sum_{n=1}^{\infty} x^{n} / n$. Then $\lim _{n}\left|x^{n+1} /(n+1)\right| \cdot\left|n / x^{n}\right|=|x|$ for all $x \neq 0$. So by the ration test, we see that if $|x|<1$, then $f(x)$ is convergent and if $|x|>1$, then $f(x)$ is divergent. So $r=1$. Also, it is known that $f(1)$ is divergent but $f(-1)$ is divergent. Therefore, we have $\operatorname{dom} f=[-1,1)$.

Example 8.8. Let $f(x)=\sum x^{n} / n^{2}$. Then by using the same argument of Example 8.7, we have $r=1$. On the other hand, it is known that $f(\pm 1)$ both are convergent. So dom $f=[-1,1]$.

Lemma 8.9. With the notation as above, if $r>0$, then f converges uniformly on $(-\eta, \eta)$ for any $0<\eta<r$.

Proof. It follows from Lemma 8.1 at once.

Remark 8.10. Note that the Example 8.7 shows us that f may not converge uniformly on $(-r, r)$. In fact let f be defined as in Example 8.7. Then f does not converges uniformly on ($-1,1$). In fact, if we let $s_{n}(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$, then for any positive integer n and $0<x<1$, we have

$$
\left|s_{2 n}(x)-s_{n}(x)\right|=\frac{x^{n+1}}{n+1}+\cdots \cdots+\frac{x^{2 n}}{2 n}
$$

From this we see that if n is fixed, then $\lim _{x \rightarrow 1-}\left|s_{2 n}(x)-s_{n}(x)\right|>1 / 2$. So for each n, we can find $0<x<1$ such that $\left|s_{2 n}(x)-s_{n}(x)\right|>\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$. Thus f does not converges uniformly on $(-1,1)$ by the Cauchy Theorem.

Proposition 8.11. With the notation as above, let $\ell=\overline{\lim }\left|a_{n}\right|^{1 / n}$ or $\lim \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$ provided it exists. Then

$$
r= \begin{cases}\frac{1}{\ell} & \text { if } 0<\ell<\infty ; \\ 0 & \text { if } \ell=\infty ; \\ \infty & \text { if } \ell=0 .\end{cases}
$$

Proposition 8.12. With the notation as above if $0<r \leq \infty$, then $f \in C^{\infty}(-r, r)$. Moreover, the k-derivatives $f^{(k)}(x)=\sum_{n \geq k} a_{k} n(n-1)(n-2) \cdots \cdots(n-k+1) x^{n-k}$ for all $x \in(-r, r)$.

Proof. Fix $c \in(-r, r)$. By Lemma 8.9, one can choose $0<\eta<r$ such that $c \in(-\eta, \eta)$ and f converges uniformly on $(-\eta, \eta)$.
It needs to show that the k-derivatives $f^{(k)}(c)$ exists for all $k \geq 0$. Consider the case $k=1$ first.
If we consider the series $\sum_{n=0}^{\infty}\left(a_{n} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$, then it also has the same radius r because $\lim _{n}\left|n a_{n}\right|^{1 / n}=\lim _{n}\left|a_{n}\right|^{1 / n}$. This implies that the series $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ converges uniformly on $(-\eta, \eta)$. Therefore, the restriction $f \mid(-\eta, \eta)$ is differentiable. In particular, $f^{\prime}(c)$ exists and $f^{\prime}(c)=\sum_{n=1}^{\infty} n a_{n} c^{n-1}$.
So the result can be shown inductively on k.

Proposition 8.13. With the notation as above, suppose that $r>0$. Then we have

$$
\int_{0}^{x} f(t) d t=\sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} d t=\sum_{0}^{\infty} \frac{1}{n+1} a_{n} x^{n+1}
$$

for all $x \in(-r, r)$.
Proof. Fix $0<x<r$. Then by Lemma $8.9 f$ converges uniformly on $[0, x]$. Since each term $a_{n} t^{n}$ is continuous, the result follows.

Theorem 8.14. (Abel) : With the notation as above, suppose that $0<r$ and $f(r)(o r f(-r))$ exists. Then f is continuous at $x=r($ resp. $x=-r)$, that is $\lim _{x \rightarrow r-} f(x)=f(r)$.

Proof. Note that by considering $f(-x)$, it suffices to show that the case $x=r$ holds.
Assume $r=1$.
Notice that if f converges uniformly on $[0,1]$, then f is continuous at $x=1$ as desired.
Let $\varepsilon>0$. Since $f(1)$ is convergent, then there is a positive integer such that

$$
\left|a_{n+1}+\cdots \cdots \cdots+a_{n+p}\right|<\varepsilon
$$

for $n \geq N$ and for all $p=1,2 \ldots$. Note that for $n \geq N ; p=1,2 \ldots$ and $x \in[0,1]$, we have

$$
\begin{align*}
s_{n+p}(x)-s_{n}(x) & =a_{n+1} x^{n+1}+a_{n+2} x^{n+1}+a_{n+3} x^{n+1}+\cdots \cdots \cdots+a_{n+p} x^{n+1} \\
& +a_{n+2}\left(x^{n+2}-x^{n+1}\right)+a_{n+3}\left(x^{n+2}-x^{n+1}\right)+\cdots \cdots \cdots+a_{n+p}\left(x^{n+2}-x^{n+1}\right) \\
& +a_{n+3}\left(x^{n+3}-x^{n+2}\right)+\cdots \cdots \cdots+a_{n+p}\left(x^{n+3}-x^{n+2}\right) \tag{8.1}\\
& \vdots \\
& +a_{n+p}\left(x^{n+p}-x^{n+p-1}\right)
\end{align*}
$$

Since $x \in[0,1],\left|x^{n+k+1}-x^{n+k}\right|=x^{n+k}-x^{n+k+1}$. So the Eq.8.1 implies that $\left|s_{n+p}(x)-s_{n}(x)\right| \leq \varepsilon\left(x_{n+1}+\left(x^{n+1}-x^{n+2}\right)+\left(x^{n+2}-x^{n+3}\right)+\cdots+\left(x^{n+p-1}-x^{n+p}\right)\right)=\varepsilon\left(2 x^{n+1}-x^{n+p}\right) \leq 2 \varepsilon$.
So f converges uniformly on $[0,1]$ as desired.
Finally for the general case, we consider $g(x):=f(r x)=\sum_{n} a_{n} r^{n} x^{n}$. Note that $\lim _{n}\left|a_{n} r^{n}\right|^{1 / n}=1$ and $g(1)=f(r)$. Then by the case above,, we have shown that

$$
f(r)=g(1)=\lim _{x \rightarrow 1-} g(x)=\lim _{x \rightarrow r-} f(x)
$$

The proof is finished.
Remark 8.15. In Remark 8.10, we have seen that f may not converges uniformly on $(-r, r)$. However, in the proof of Abel's Theorem above, we have shown that if $f(\pm r)$ both exist, then f converges uniformly on $[-r, r]$ in this case.

9. REAL ANALYtic FUNCTIONS

Proposition 9.1. Let $f \in C^{\infty}(a, b)$ and $c \in(a, b)$. Then for any $x \in(a, b) \backslash\{c\}$ and for any $n \in \mathbb{N}$, there is $\xi=\xi(x, n)$ between c and x such that

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+\int_{c}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t
$$

Call $\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}$ (may not be convergent) the Taylor series of f at c.
Proof. It is easy to prove by induction on n and the integration by part.

Definition 9.2. A real-valued function f defined on (a, b) is said to be real analytic if for each $c \in(a, b)$, one can find $\delta>0$ and a power series $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ such that

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k} \tag{*}
\end{equation*}
$$

for all $x \in(c-\delta, c+\delta) \subseteq(a, b)$.

Remark 9.3.

(i) : Concerning about the definition of a real analytic function f, the expression (*) above is uniquely determined by f, that is, each coefficient a_{k} 's is uniquely determined by f. In fact, by Proposition 8.12, we have seen that $f \in C^{\infty}(a, b)$ and

$$
\begin{equation*}
a_{k}=\frac{f^{(k)}(c)}{k!} \tag{**}
\end{equation*}
$$

for all $k=0,1,2, \ldots$
(ii) : Although every real analytic function is C^{∞}, the following example shows that the converse does not hold.
Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

One can directly check that $f \in C^{\infty}(\mathbb{R})$ and $f^{(k)}(0)=0$ for all $k=0,1,2 \ldots$ So if f is real analytic, then there is $\delta>0$ such that $a_{k}=0$ for all k by the Eq. $(* *)$ above and hence $f(x) \equiv 0$ for all $x \in(-\delta, \delta)$. It is absurd.
(iii) Interesting Fact : Let D be an open disc in \mathbb{C}. A complex analytic function f on D is similarly defined as in the real case. However, we always have: f is complex analytic if and only if it is C^{∞}.

Proposition 9.4. Suppose that $f(x):=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ is convergent on some open interval I centered at c, that is $I=(c-r, c+r)$ for some $r>0$. Then f is analytic on I.
Proof. We first note that $f \in C^{\infty}(I)$. By considering the translation $x-c$, we may assume that $c=0$. Now fix $z \in I$. Now choose $\delta>0$ such that $(z-\delta, z+\delta) \subseteq I$. We are going to show that

$$
f(x)=\sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!}(x-z)^{j}
$$

for all $x \in(z-\delta, z+\delta)$.
Notice that $f(x)$ is absolutely convergent on I. This implies that

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty} a_{k}(x-z+z)^{k} \\
& =\sum_{k=0}^{\infty} a_{k} \sum_{j=0}^{k} \frac{k(k-1) \cdots \cdots(k-j+1)}{j!}(x-z)^{j} z^{k-j} \\
& =\sum_{j=0}^{\infty}\left(\sum_{k \geq j} k(k-1) \cdots \cdots(k-j+1) a_{k} z^{k-j}\right) \frac{(x-z)^{j}}{j!} \\
& =\sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!}(x-z)^{j}
\end{aligned}
$$

for all $x \in(z-\delta, z+\delta)$. The proof is finished.

Example 9.5. Let $\alpha \in \mathbb{R}$. Recall that $(1+x)^{\alpha}$ is defined by $e^{\alpha \ln (1+x)}$ for $x>-1$.
Now for each $k \in \mathbb{N}$, put

$$
\binom{\alpha}{k}= \begin{cases}\frac{\alpha(\alpha-1) \cdots \cdots(\alpha-k+1)}{k!} & \text { if } k \neq 0 ; \\ 1 & \text { if } x=0 .\end{cases}
$$

Then

$$
f(x):=(1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

whenever $|x|<1$.
Consequently, $f(x)$ is analytic on $(-1,1)$.
Proof. Notice that $f^{(k)}(x)=\alpha(\alpha-1) \cdots \cdots(\alpha-k+1)(1+x)^{\alpha-k}$ for $|x|<1$.
Fix $|x|<1$. Then by Proposition 9.1, for each positive integer n we have

$$
f(x)=\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^{k}+\int_{0}^{x} \frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1} d t
$$

So by the mean value theorem for integrals, for each positive integer n, there is ξ_{n} between 0 and x such that

$$
\int_{0}^{x} \frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1} d t=\frac{f^{(n)}\left(\xi_{n}\right)}{(n-1)!}\left(x-\xi_{n}\right)^{n-1} x
$$

Now write $\xi_{n}=\eta_{n} x$ for some $0<\eta_{n}<1$ and $R_{n}(x):=\frac{f^{(n)}\left(\xi_{n}\right)}{(n-1)!}\left(x-\xi_{n}\right)^{n-1} x$. Then
$R_{n}(x)=(\alpha-n+1)\binom{\alpha}{n-1}\left(1+\eta_{n} x\right)^{\alpha-n}\left(x-\eta_{n} x\right)^{n-1} x=(\alpha-n+1)\binom{\alpha}{n-1} x^{n}\left(1+\eta_{n} x\right)^{\alpha-1}\left(\frac{1-\eta_{n}}{1+\eta_{n} x}\right)^{n-1}$.
We need to show that $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$, that is the Taylor series of f centered at 0 converges to f. By the Ratio Test, it is easy to see that the series $\sum_{k=0}^{\infty}(\alpha-k+1)\binom{\alpha}{k} y^{k}$ is convergent as $|y|<1$.
This tells us that $\lim _{n}\left|(\alpha-n+1)\binom{\alpha}{n} x^{n}\right|=0$.
On the other hand, note that we always have $0<1-\eta_{n}<1+\eta_{n} x$ for all n because $x>-1$. Thus, we
can now conclude that $R_{n}(x) \rightarrow 0$ as $|x|<1$. The proof is finished. Finally the last assertion follows from Proposition 9.4 at once. The proof is complete.

References

(Chi-Wai Leung) Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong E-mail address: cwleung@math.cuhk.edu.hk

